larch.Model#
- class Model(*args, **kwargs)[source]#
Bases:
NumbaModel,OptimizeMixin,PanelMixinMethods
__init__(*args, **kwargs)add_parameter_array(name, values)analyze_elasticity(variable[, altid, q, n, ...])Analyze elasticity of the model.
analyze_predictions_co([q, n, caption, ...])Analyze predictions of the model based on idco attributes.
analyze_predictions_co_figure([q, n, ...])Create an Altair figure of the model's predictions based on idco attributes.
apply_random_draws(parameters[, draws])availability_def([new_def])Get or set the definition of the availability variable.
bhhh([x, start_case, stop_case, step_case, ...])calculate_parameter_covariance([pvals, robust])Calculate the parameter covariance matrix.
check_d_loglike([stylize, skip_zeros])Check that the analytic and finite-difference gradients are approximately equal.
check_for_overspecification([pvals])Check model for possible over-specification.
check_random_draws([engine])choice_avail_summary()Generate a summary of choice and availability statistics.
choice_def([new_def])Get or set the definition of the choice variable.
clear_cache()Remove all cached log likelihood values and estimation results.
constraint_converge_tolerance([x])constraint_penalty([x])constraint_violation([on_violation, ...])Check if constraints are currently violated.
copy([datatree])d2_loglike([x, start_case, stop_case, step_case])d_loglike([x, start_case, stop_case, ...])d_loglike_casewise([x, start_case, ...])d_logloss([x, start_case, stop_case, step_case])distribution_on_idca_variable(x[, xlabel, ...])Generate a figure of observed and modeled choices over a range of variable values.
distribution_on_idco_variable(x[, xlabel, ...])Generate a figure of variables over a range of variable values.
doctor(**kwargs)Run diagnostics, checking for common problems and inconsistencies.
dumps()estimate(*args, **kwargs)Maximize loglike, and then calculate parameter covariance.
estimation_statistics([compute_loglike_null])Create an XHTML summary of estimation statistics.
estimation_statistics_raw([compute_loglike_null])Compile estimation statistics as a pandas Series.
fit_bhhh(*args, **kwargs)from_dict(content)get_param_loc(name)Get the position of a named parameter.
get_value(name, *[, default, kind])histogram_on_idca_variable(x, **kwargs)initialize_graph([alternative_codes, ...])Write a nesting tree graph for a MNL model.
is_mnl()Check if this model is a MNL model.
jax_maximize_loglike([method, stderr, ...])jax_neg_d_loglike(*args, **kwargs)jax_neg_loglike(params)jax_param_cov(params)jumpstart_bhhh([steplen, jumpstart, ...])Jump start optimization.
load_data(*args, **kwargs)No-op.
lock_value([name, value])Set a fixed value for a model parameter.
loglike([x, start_case, stop_case, ...])Compute the log likelihood of the model.
loglike2([x, start_case, stop_case, ...])loglike2_bhhh([x, return_series, ...])loglike_casewise([x, start_case, stop_case, ...])loglike_null([use_cache])Compute the log likelihood at null values.
loglike_problems()Identify cases with log likelihood problems.
logloss([x, start_case, stop_case, ...])logsums([x, start_case, stop_case, ...])make_random_draws([engine])mangle([data, structure])maximize_loglike(*args, **kwargs)Maximize the log likelihood.
mixture_density(param_name[, limits])Create a density plot of a mixture parameter.
Create a summary of the mixture parameters as a pandas DataFrame.
neg_d_loglike([x, start_case, stop_case, ...])neg_loglike([x, start_case, stop_case, ...])Create a tabular summary of parameter values.
plock([values])Lock the values of one or more parameters.
pretty_table()probability([x, start_case, stop_case, ...])Compute values for the probability function embodied by the model.
quantity([x, start_case, stop_case, ...])reflow_data_arrays()Reload the internal data_arrays so they are consistent with the datatree.
release_memory()Release memory-intensive data structures.
remove_unused_parameters([verbose])Remove parameters that are not used in the model.
required_data()Report what data is required in DataFrames for this model to be used.
robust_covariance()Compute the robust covariance matrix of the parameter estimates.
save(filename[, format, overwrite])set_cap([cap])Set limiting values for one or more parameters.
set_value(name[, value, initvalue, ...])Set the value one or more attributes of a single parameter.
set_values([values])Set the parameter values for one or more parameters.
should_preload_data([should])swap_datatree(tree[, should_mangle])Swap the current datatree with a new datatree.
to_xlsx(filename[, save_now, ...])Write the estimation results to an Excel file.
Compute the total weight of cases in the loaded data.
unmangle([force, structure_only])update_parameters(x)utility([x, start_case, stop_case, ...])Compute values for the utility function contained in the model.
utility_breakdown(altid, *[, caseid, caseindex])Compute the utility breakdown for a given case and alternative.
utility_functions([subset, resolve_parameters])Generate an XHTML output of the utility function(s).
Attributes
autoscale_weightsWhether to automatically scale case weights.
availability_anyA flag indicating whether availability should be inferred from the data.
An idca variable or expression indicating if alternatives are available.
A mapping giving idco expressions that evaluate to availability indicators.
availability_varchoice_anyAn idca variable giving the choices as indicator values.
An idco variable giving the choices as alternative id's.
A mapping giving idco expressions that evaluate to indicator values.
common_drawscompute_engineconstraint_intensityA simple attribute descriptor.
constraint_sharpnessA simple attribute descriptor.
constraintsdashboardA simple attribute descriptor.
datadata_as_loadeddata_as_possibledataflowsA simple attribute descriptor.
Data arrays as loaded for model computation.
A source for data for the model.
float_dtypegraphgroupididentGetter method for the ident property.
is_mangledlog_nanslogsum_parameterA copy of the result dict from most recent likelihood maximization.
The number of cases in the attached data.
n_drawsn_paramsorderingA simple attribute descriptor.
parametersA copy of the current min-max bounds of the parameters.
A DataFrame of the model parameters.
An array indicating which parameters are marked as holdfast.
pinitvalsAn array of the initial parameter values.
An array of the current parameter maximum values.
An array of the current parameter minimum values.
An array of the current parameter names.
An array of the current parameter null values.
Possible overspecification of the model.
prerolled_drawsAn array of the current parameter standard errors.
An array of the current parameter values.
The portion of the quantity function computed from idca data.
quantity_scalerename_parametersA simple attribute descriptor.
seedstreamingtitleA simple attribute descriptor.
use_streamingThe portion of the utility function computed from idca data.
The portion of the utility function computed from idco data.
weight_co_varweight_normalizationwork_arraysA simple attribute descriptor.