larch.model.troubleshooting.nan_data_co#
- nan_data_co(model: NumbaModel, repair: Literal['?', True, '!'] = '?', verbose: int = 3) tuple[NumbaModel, DataFrame | None] [source]#
Check if some data_co values are NaN.
- Parameters:
model (larch.Model) – The model to check.
repair ({"?", "!", True}) – Whether to repair the data. Any true value other than “?” or “!” will make NaN values in data_co zero. The question mark simply emits a warning if there are NaN values found, while the exclamation mark will raise an error.
verbose (int, default 3) – The number of example columns to list for each problem.
- Returns:
model (larch.Model) – The model with revised dataset attached.
diagnosis (pd.DataFrame) – The number of bad instances, and some example rows.
- Raises:
ValueError – If the repair is set to ‘!’ and there are any NaN values found.