ModelGroup#
|
A group of models that can be treated as a single model for estimation. |
Attributes#
Parameters#
A DataFrame of the model parameters. |
|
An array of the current parameter values. |
|
An array of the current parameter names. |
|
An array indicating which parameters are marked as holdfast. |
|
An array of the current parameter null values. |
|
An array of the current parameter maximum values. |
|
An array of the current parameter minimum values. |
|
A copy of the current min-max bounds of the parameters. |
|
An array of the current parameter standard errors. |
|
Estimation Results#
A copy of the result dict from most recent likelihood maximization. |
|
Possible overspecification of the model. |
Methods#
Setting Parameters#
|
Set the parameter values for one or more parameters. |
|
Set a fixed value for a model parameter. |
|
Set limiting values for one or more parameters. |
Parameter Estimation#
|
Maximize loglike, and then calculate parameter covariance. |
|
Maximize the log likelihood. |
Calculate the parameter covariance matrix. |
Model Fitness#
|
Compute the log likelihood at null values. |
Reporting#
Create a tabular summary of parameter values. |
|
|
Write the estimation results to an Excel file. |
Ancillary Computation#
Compute the total weight across all models in the group. |
|
|
Compute the log likelihood of the group of models. |
|
|
|
Compute the gradient of the log likelihood of the group of models. |
|
|
Compute the log likelihood case-by-case for the group of models. |
Troubleshooting#
|
Run diagnostics, checking for common problems and inconsistencies. |