Model#
|
Attributes#
Data Connection#
A source for data for the model. |
|
Data arrays as loaded for model computation. |
|
The number of cases in the attached data. |
Choice Definition#
Alternative Availability#
Utility Definition#
Parameters#
A DataFrame of the model parameters. |
|
An array of the current parameter values. |
|
An array of the current parameter names. |
|
An array indicating which parameters are marked as holdfast. |
|
An array of the current parameter null values. |
|
An array of the current parameter maximum values. |
|
An array of the current parameter minimum values. |
|
A copy of the current min-max bounds of the parameters. |
|
An array of the current parameter standard errors. |
|
Estimation Results#
A copy of the result dict from most recent likelihood maximization. |
|
Possible overspecification of the model. |
Methods#
Setting Parameters#
|
Set the parameter values for one or more parameters. |
|
Set a fixed value for a model parameter. |
|
Set limiting values for one or more parameters. |
|
Remove parameters that are not used in the model. |
Parameter Estimation#
|
Maximize the log likelihood. |
Calculate the parameter covariance matrix. |
Model Fitness#
|
Compute the log likelihood at null values. |
Model Analysis#
|
Analyze predictions of the model based on idco attributes. |
|
Create an Altair figure of the model's predictions based on idco attributes. |
|
Analyze elasticity of the model. |
|
Reporting#
Create a tabular summary of parameter values. |
|
|
Create an XHTML summary of estimation statistics. |
Create a summary of the mixture parameters as a pandas DataFrame. |
|
|
Write the estimation results to an Excel file. |
Ancillary Computation#
|
|
|
Check that the analytic and finite-difference gradients are approximately equal. |
|
|
|
|
|
Compute the log likelihood of the model. |
|
|
|
|
|
|
|
Compute values for the probability function embodied by the model. |
|
|
Compute the total weight of cases in the loaded data. |
|
|
Compute values for the utility function contained in the model. |
Troubleshooting#
|
Run diagnostics, checking for common problems and inconsistencies. |